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I. INTRODUCTION

Intermodal dispersion in a waveguide results in widening of the original transmitted
pulse. Analogously, multiple arrivals of average signal energy due to rough surface
scattering result in dispersion of the transmitted pulse. An additional source of pulse
dispersion in a waveguide is the frequency dependence of the propagation constant.
Similarly, frequency dependence of the propagation constant results in additional
dispersion of the time dependent scattered field -- especially at shallow grazing angles.
By assuming an arbitrary narrowband plane wave source signal, a general near-field
expression for the time dependent scattered intensity is obtained in terms of statistics
of the rough surface T-matrix, and equivalently, in terms of the scattering cross section.
Thus, a near-field result is expressed in terms of a far-field entity, the scattering cross
section. This result is then used to obtain an approximate scattered field expression for
a point source. These results apply to both scattering from the interface as well as
scattering through the interface. The latter case is of interest in bottom penetrating

sonar.

Although the theoretical results are géneral in that they depend only on the
interface T-matrix statistics, calculations are carried out using first-order perturbation
theory for penetration examples. When the grazing angle of the incident field is below
the critical angle in relation to the mean surface, only the zero-order component of the
transmitted field is evanescenf; the higher order components contain downward
traveling waves (Moe and Jackson, 1994b). Acoustic intensity as a function of depth is
computed and displayed for a continuous wave (CW) incident plane wave. The
resulting profiles of intensity versus depth are compared with the flat-surface case. The
time-dependent incoherent intensity is computed and displayed for a narrowband point
source. These computations are carried out using a low-frequency cutoff for the bottom

relief spectrum, and compared to the flat-surface case.




Il. SCATTERING PROBLEM BACKGROUND

The general scattering geometry is shown in Fig. 1. An arbitrary pressure field,

y;(r), is incident on a 2-D rough interface separating the homogenous lossless fluid in

medium 1 (water), from the lossy fluid in medium 2 (sediment). The zero-mean rough

surface is defined by:
z=hf(R), . (1)

where R is the transverse component of the three-dimensional position vector r, and &
is the root mean square (RMS) height of the surface. The total field, y;(r), above the

rough surface is a sum of an arbitrary incident field, y;(r), and the resulting scattered
pressure field, y (r):

Y1 () = v (1) + vy (). o | (2)
The boundary conditions consist of the continuity of pressure:

V1=V, (3)

and the continuity of normal velocity:

P1 P2

where 7 is normal to the surface, p; is the density of the water, and p, is the density of

the sediment. The scattered field, Yy (r), in the region above the highest point on the

surface, and the incident field, are expressed in terms of the following (Weyl) plane

wave expansions (Devaney and Sherman, 1973):
and

vi(r) = [ KW (K)e P02 R, | (6)




where K is the two-dimensional transverse wave vector with magnitude K, k; is the
wave number in the medium above the surface, and k;,, is the z-component of the

corresponding three-dimensional wave vector, with

B, (K) = y1-K2 k. (7)

For the continuous wave case, a factor of e ' is suppressed, but in general, the

above equations are the Fourier transforms of the time domain field,
V(1) =y (ro) = [dry(rre'™. (8)

The field below the rough surface is expressed as a plane wave expansion of waves

traveling in the negative z direction,

Yy_(r)= _[de‘Pz_(K)e"ik2B2(K)Ze’K"R, z2<0 (9)
where,
Bry(K)=+1-K?/k3 (10)
and
1+i6
kr =k 11
2=k — (11)

is the complex wave number in the lossy medium below the surface with loss
parameter, 8. The speed ratio, v, is the ratio of the sound speed in the sediment to the
‘sound speed in the water. The scattered field can be expressed in terms of the
incident field and the T-matrix, T;;:

Wy (K)= [d°K T} (K K)¥;(K) (12)

Likewise, the downward component of the scattered field penetrating below the surface

is expressed in terms of the T- matrix, Tj,:




q’z—(K)=szK'le(K,K')‘Pi(K')- (13)
The scattered field for the case of an incident plane wave is found by substituting,

¥;(K)=8(K-K;), | | (14)
into Eqg. (12), and the result into Eq. (5), yielding

s (r) = [ 4K T (K K; )eMP1 ) KR, (15)

The scattered field penetrating the surface for the incident plane wave case is found in
the same way from Egs. (9), (13) and (14), '

Yoo () = [d°K T (K K;) e HoP2(K)z K R - -

lli. GENERAL RESULT FOR INCIDENT PLANE WAVE

The purpose of this section is to derive an expression for the average intensity time
series at the receiver position, r, due to a narrowband plane wave source. Although
the following derivation considers the more general case of scattering through the

rough interface, it also applies to scattering from a rough interface.

A. Time domain received signal

‘A narrowband source signal s(r), with Fourier transform:
S(w)= [dr s(r)e™", (17)

can be represented as:

s(r) = Re{u(?) e, (18)




where u(r) is the corresponding complex baseband input signal, with Fourier transform,
U(w), and o, is the carrier frequency, or center frequency of the pulse. An incident
plane wave pulse with direction denoted by the transverse unit vector, @;, and incident

grazing angle 8;, is expressed in terms of its 2-D Fourier transform as:

¥,(K,0) = S@)5(K - K,)e®%ssn%/a g0, - (19)
where
K, = 2cosG,‘éL,-, : (20)
a

is the incident transverse wave vector, and z, is taken to be an arbitrary source height.

Using Egs. (9), (13), (17), (18), (19), and chapter 3, Proakis (1989), the baseband

pressure signal v, (r,?) at a position r =(R,z) below the surface is expressed as:

1 ’ " —ie ’
Vi (r,t):ajdm {U((o )e O [ 4K T (K K, 0"+, )
(21)

xeisineizs((n'ﬂoc)/q e—ixﬁz(K,c)'+coc)z(0)'+wc)/q eiKAR}

where
K= k2 /kl (22)
is the complex wave number ratio,

O+,
51

K;= cos6;0,;, (23)

and we have explicitly shown the dependence of ,(K) on frequency as well as on the

magnitude of K.

B. Time dependent intensity

The time dependent intensity at position r can be expressed as:




Iy(r,n)= <|Wbb (raf)l2>7 ' (24)

Combining Egs. (21) and (24) yields:

2 s ’ . ”
]2 (r, t) = (ﬁ) jdﬁ),j d(D”{U((D’)U*((D”) e—l(!)tel(o t

x[d%” [d%’ (Tip(K' K}, 0"+ 0 )T (K Kf, 0" +0 o))

xrt 7”7 L ’ L) ” (25)
xe'K R.-K ‘Retsmeizsm/cle—t sinB;z, 0"/

Xe—thz(K',m'+mc)zm’/c1 i(kPo (K", 0"+, ) 0"+0, /cl}
where the transverse wave vectors for the incident field at the angular frequencies ®”,

and ®’ are

O, +0” A ®,+0’
= cosf;0,;, Ki =—<
q |

K/= cos0;4;. (26)
Define G»(K’, K", K/, K/, 0. +0’,00,+0"), (see for example Zipfel and DeSanto, 1972;
Voronovich, 1995) such that
T, (K, K50+, )T (K" K/,0” +©
< 12( i c) 12( i c)> . (27)
=G, (K K"K, K/, 0, + 0,0, +0")0(K”-K'+K] -K})
In the above expression, the subscript is used to represent scattering into the sediment

and the dependence of T;, on o is included in the argument. Substituting Eq. (27) and

” ’

© cos6,6, =Ky . (28)

K- K =—
1

into Eqg. (25), and changing the integration variable K’ to
K=K'+K,/2, (29)

yields:




2
I(r,1)= (El;t—) jdco’_[d(o"U (0)U (@) e70ei0"

.deZKClz(K -K;/2.K+K; /2, K[ K},0,+0",0,+0")e®4R (30)

« el sin 0;2,0/¢q e—ising;zg ®”/¢

« e——ivcﬁz (K-Kg/20.+0")z0'/q ei(KB2(|K+K d /2|,mC+m”))*z(u)C+m”) Ja1

Equation (30) is now evaluated by making a few approximations. For the case of a

narrowband source signal, we can assume (j, is a slowly varying function of

frequency,
Gr(K-Ky /2, K+K,/2 KK/ 0. +0",0.+0')=CGH(K,K K K;,0.,0,) (31)
E612(1(’Ki’mc) ’ '
where the relation (Thorsos and Jackson, 1989; Berman, 1992),
Cia (K. K7, 00, )3(K = K”) = (T3 (K. K7, 0, )T (K", K, 0 )) (32)
is a special case of Eq. (27), and K; is evaluated at the center frequency:
Ki =-ciC-COSGi61i. (33)

qa

First-order perturbation theory can be used to show that Equation (31) is a valid

approximation. Also, define the vertical component of the wave vector in medium 2,
By (K, 0, +0",0, +0") = (0, +®")/c; JxB, (K - K 4 /2,0, + ), (34)

Analytical expressions for dispersion in a waveguide can be found by expanding the
exponent of the time dependent field in a power series (for example, see Ishimaru,

1991). Since K, =[K,| is a function of both @’ and w”, (®’/c;)kB, is expanded in a

power series in ®” and ©”, for the case of a narrowband signal:




By(K,0, +0)',03c+0)")EBzc(K)+M;2,m’+———aB%, ®”
IO 0w
2 2 2 (35)
+i a_B_2 0)'2 +2 0 B2 0)/(0//+a B2 (1)”2
2 8(0,2 a(ﬂaﬁ)” am”2

where the derivatives are evaluated at o' =»” =0, and
By (K)=xkiBy (K, o), (36)

where the wave number, kj, in the above equation, and all following equations, is
evaluated at the center frequency (k; =, /c;). Solving for the derivatives in Eq. (35)

and combining like powers of ®” and ®” in Eq. (30) yields,
I(r,t)= szK {Clz(K,K,-,wc)ezklclm(KBZ(K’mC))z
N * .42 ¥
X?Z%Jd(’)”U*(w”)elw (1—1‘1—1’2) el(l) P /4 , (37)

% 1 J’ do’U ( (D') e—iw’(r—tl —tz)e—m’co”Q e—im'?' P/4}
2n

where
H= L cos6; +Z—Ssin9,- +7 4 Keosh; Re[ ! ) (38)
¢ ¢ ciky KB (K. 0,)
and
f =——2Xa_ (39)
ﬁ2(K’ (’)c)

The physical significance of these parameters will be discussed later. Note that 7 is
real and 1, is complex. The complex coefficient
~ 3 2y . 2
P= {(2K2/B%C)((Xi 'K(DC COSGI'/CI —(K/Cl) )—lIID(l/Bzc)(COSGi/Cl)

’ (40)
—i Im(l/B%C)(éti -Kcos; /c; )z}z




and the real coefficient

0 =1m{(8; Keos8; /B3, *w. /e - 6; Kcosb, /(26t))-cos?s; /(2c1232¢)}z (41)
lead to pulse dispersion. Defining

Lok 42 ¥
gz(t)zi_[d(o”U*((n”)e“‘) 1 i P/4

1 TR ) ! (42)
X—jdﬂ)' U((D')e—lm 10’0 Qe—l(D P/4
2n
results in a simple expression for the time dependent intensity in medium 2:
L0 = [dK (KK 0,)e™ tm(<By(Kc))e g2, _, ). (43)

in addition to being a function of the complex argument, ¢, g(r) is a function of K, the

incident field direction, and fluid-sediment parameters. Note that
ty=t+1. (44)

is also a complex function of K. For an arbitrarily small pulse bandwidth (CW), the

dispersion terms are arbitrarily small, and g(¢) — u(1).

While Eq. (43) involves an integral over the transverse wave vector, it can be

converted to an integral over the scattering surface through the change of variable,

R’ =R-vr; K/k. | (45)

As shown in Fig. 2, R’ is the location of a small scattering patch on the surface, and

r4 =4 is the distance from this patch to the field point, r,

ry=[R-RP72+22 (46)

As the variables R; and Rj range over all real values, Eq. (45) constrains K to the

range K <k;/v. This change of variables forces neglect of evanescent waves.

The Jacobian follows from Eq. (45),

10




2,.2
Yd+< Xd¥Yd

Xayd x(% +2Z

_ K 22 (47)
vid o

(B_K) K
oR’ Vzrf

where x;, and y, are the transverse coordinates of r;. The geometric significance of

2

these definitions is apparent when one assumes that the loss parameter is small
(8 << 1), Then

k]K[.))z(K,(Dc)= (Kkl)z—K2 (48)
= (ky sin 62/\1)(1+i6/sin2 92)’

where

sin®, =+/1- K2 v2/kZ =|z|/r, (49)

is the sine of the scattered grazing angle defined in Fig. 2. Dropping terms of second
order and higher in the loss parameter, the significance of 1; and t, becomes apparent,

as
t;=R’-Q;cos0;/c; +2z,5in6; /) ’ (50)

is the time required for the incident plane wave front with direction (6; cos8;,sin6;) to

travel from the source reference point, (0,0,z,) to the scattering patch, (R’,0), and

Re(ty) =14/ (51)
is the time required for a spherical wave scattered from the patch at (R’,0) to travel

through the sediment to the field point (R,z), z<0. According to Eq. (48), the

absorption exponent in medium 2 is given by

(B (K0, ))d = Elvﬁp;\/sin 8, = Im(k, )r;. (52)

11




Substituting Egs. (47) and (52) into Eq. (43) results in:
2.2
7 , ki sin“(0 _
<|\V2-(l')l >=jd2R szrgi)clz(K’Ki,wc)e 2im{kz)a g (t-1q)- (53)
d
Substituting the following quantity,

. .. kPsin?(®
012(6,6;) —lv—z(g—)Qz(KaKz‘,ch), (54)

1l

6(=K/K,and di':Ki/Ki (55)

into Eq. (53) yields,

Lr.n = [dR ——012(&’6;i)e“2h“(k2)1“r1 g2(t-14). (56)
-~

The interpretation of 6, as a scattering cross section will be justified later in this
section. Since K=k (R-R")/(vry), 11, 1, g, and therefore P, and Q are functions of
[R-R’|. Limiting the integration in Eq. (43) to the non-evanescent regions, K <k /v,
noticeably affects the integral only when within a wavelength of the surface. Note that
the CW result follows from Eq. (56) by simply setting g(r—7;)=1. For this case of an
arbitrarily narrowband source signal, the result in Eq. (43) is exact, and Eq. (56) is

exact everywhere, except very close to the surface.

Although the intensity of the field scattered into the water, I;(r,t), is similarly
derived, the corresponding expression for I;(r,t) is most easily obtained as a special
case of Eq. (56) by substituting medium 1 parameters for medium 2 parameters. For
example, k; is substituted for k,, B; for xB,, etc. For this special case, Eq. (56)
simplifies to

A A

oy (Q, 0
Il(r,t)zjdzR'—l—”(—Tz’)glzl(t—td), (57)
r-r

12




where from Eq. (54)

o11(6.8;) = ki Siﬂz(ez)lcn(K,Ki,(Dc)iz- (58)

In this case, 6, is also the scattered field grazing angle measured from the mean

horizontal plane, |z|/r; =sin(6,). Again, the quantity G;; is found from the relation (Eq.
32)

C:l I(K’ Ki9(’)c)8(K - K”) = <T1 I(K’Ki’ O, )Tl*l (K”’K:‘v O, )> (59)

There is no loss in this case -- 0 =0, and therefore,

e 2
()= L [aoru(o)e e Akl o
Pll -=—(2/B131c)((DCKCOSGi Cos(p/ci-)’_(K/Cl)Z), (61)
and
B (K)= k1B1(K,(DC), .

Note that 1, is still given by Eq. (44), but the propagation time from the surface patch to

the receiver, or observation point above the surface is a real quantity --

z/cy

t =m. (63)

As shown in Voronovich (1995), the quantity o11(&.&;) in Eq. (58) is actually the

scattering cross section per unit area defined in Ishimaru, (1978).

L
e (o)

A4 |Wi|2 ’

Gll(d’&i) (64)

where v, is a plane-wave field incident on a surface patch of area A4, and §; is the

unit vector in the direction of propagation of the incident field; v, is the scattered field

13




at a long distance ]r—r’]2 from the surface, in the direction denoted by the unit vector,
a. Similarly, oy,, is the scattering cross section per unit area of a rough surface

relating the incident field intensity to the scattered field intensity in medium 2 (the
sediment), defined as:

2
_ r—r’ 2 < [va-| > 2Im(ky )r—r'

012(6.8;)=—— e
3

(65)

where y, is the field at the receiver in the sediment, a distance |[r~r’| from the

surface patch, and the unit vector G represents the transverse direction of the scattered
field in the lower medium. The result given in Eq. (56) (or Eq. 57) is remarkable, as the
cross section, Eq. (65), is a far-field entity. Close inspection of Eq. (56) shows that it is
the "naive" sonar equation, when u(r) is substituted for g(z), in which the scattering
intensity is obtained by integrating the bistatic cross section over the interface with
appropriate attenuation due to spreading and sediment loss. Equations (32) and (54)
are a convenient way to find c;, in theoretical developments; Egs. (58) and (59) are a

convenient way to find ¢;;.

C. Dispersion of a Gaussian input pulse

Two types of pulse dispersion occur in this problem. One type is simply due to
scattering and is treated by the integral in Eq. (56) over the scattering surface. The
other type of dispersion is due to the frequency dependence of the propagation
constant, and is embodied in Egs. (42). This subsection focuses on this form of

dispersion. Consider the case of an input pulse with a Gaussian envelope,

u(t) = /5 , (66)

with Fourier transform

14




U(w)=t,J1 RO, (67)

Substituting Eq. (67) into Eq. (42) and integrating over o’ and ®” yields:

2 2 2 - * 2 2 2 ”?2
)= la el fa? (68)
q4

where

q' = \,tg' +iP, (69)

” 2 . 14

q” =ty —iP”, (70)
and

’” * . n2
P"=P" -i(20/q")", - (71)

Substituting Egs. (69) and (70) into Eq. (68), and simplifying, yields an expression
equivalent to Eq. (68)

. _ 2_. *x\.,2
2(0)- ti o 2Re{(132 iP*)e } | o)
\/tf-ip* ~(20) tsz-iP*] -(20)*

As mentioned, Re(z;)=Re(tp)+1 represents the propagation delay of the pulse. The

imaginary part of ¢, is a result of modeling the sediment as lossy. Since higher
frequency signals are attenuated more than lower frequency signals, the lower
frequency components of a narrowband signal will be less attenuated than the center
frequency. The imaginary component of 1, along with Q, and the imaginary
component of P com'pensate for typically excessive loss in the CW loss term -- the
exponential term in Eq. (43) or Eq. (56). In addition, P is a frequency dispersion term
that results in pulse broadening of the signal below the rough surface (specifically the

real component of P). Note that for the zero loss case, the parameter 0=0. The

15




effect of loss and the parameters P and Q is seen in Fig. 3 for g(t-1;) from Eq. (72)

evaluated at

(114 )' =¢%(~1u), i =Imitg) =Tm(r,) (73)

I=Re(td)

and plotted as a function of scattered grazing angle for lossy and zero-loss sediment.

In Fig. 3, the pulse length parameter, 7., is equal to two periods of the center, or carrier
frequency for both cases shown. When the loss and dispersion are small, |g(—12,-)]

approaches u(0)=1. The smaller the scattered grazing angle, the greater the

dispersion, and the smaller one would expect the pulse peak amplitude. However, the

loss of the CW signal represented by the term, ¢ 2Im(kz)r-r1

, is greater than the loss of
the narrowband signal, and the propagation distance becomes large for small scattered
grazing angles (z is fixed). Even though there is dispersion, the loss for the narrow

band case is significantly less than the CW case, and |g(~1,;)|>1 . In the case of Fig.

3, with depth of 0.3m, |g(~ty;)| is greater than one for very small grazing angles since

the propagation distance becomes very large. An example with zero loss always has

P"=P

£

, 1p; =0, and it is always true that |g(0)[<1.

IV. ANALYTICAL SCATTERING MODEL (PERTURBATION THEORY)

In the examples of the following section, the intensity of the field in medium 2 is
divided into coherent and incoherent parts. The incoherent intensity is treated using
first-order perturbation theory, and the coherent intensity is treated in zeroth order - the
flat surface solution is used. There is a slight inconsistency in this approach, in that the

incoherent intensity is proportional to the second power of kjkh, while the coherent

intensity is only computed to an accuracy of zeroth order. As Rice (1951) has shown,

16




the coherent intensity to second order in kh is obtained by subtracting the power

carried by the incoherent intensity. For small k%, this correction is necessarily slight.

A. Incoherent intensity using the first-order perturbation approximation

In this section, the first-order perturbation results are given for the scattering cross
section for insertion in Eq. (56). The first-order T-matrix is proportional to the 2-D

Fourier transform of the surface, F(K), (see the Appendix) and is given by:

le(K’Ki):_:(klh)Tlg)(K’Ki):(klh)H12(K’Ki)F(K"Ki)v (74)
where
vy T(K”) ” e (1 |
Hp(K ,K)_ziB] (K”)[a(K JK)(1+T(K))-b(K”,K)(1-T(K))]. (75)

is a function of the flat-surface reflection coefficient, T, the flat-surface transmission

coefficient,

T(K)=1+T(K) (76)
as well as the factors a(K”,K) ahd b(K” K) defined in the appendix. Using

n*(F(K”-K;)F(K'-K;)) = W(K'- K;)3(K" - K’) (77)
together with Eq. (32), and Eq. (74) yields:

Gio (K K;,00,) = [l Hyo (KK ;) WK -K;). (78)

An expression for the first-order incoherent intensity results from substituting Eq. (78)

into Eq. (43). Equivalently, the first-order intensity is found from Eq. (56), where

. .\ ksin?(8
oglz)(af,oc,-) =—li32—(—2—)—\k1H12(Kf,Ki)’2W(Kf -Ki), (79)
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the scattering cross section from first-order perturbation theory, is found from
substituting Eq. (79) into Eq. (54). Although the cross section in this approximation is
actually second order in kjh, (Thorsos and Jackson, 1989), we will refer to it as the

first-order cross section, and will refer to the corresponding scattered intensity as the

first-order intensity.

B. Zero-order intensity

The zero-order, or flat-surface transmitted coherent intensity for an incident plane

wave, is given by the magnitude squared of Eq. (16), with Tl(g)(K,K,-) given by (A6):

l\v({?(r)z = [T (K emlaPaKi))z (80)

C. Roughness spectrum

The two dimensional Gaussian random process f(R) describing the seafloor
surface is assumed to be isotropic, with a roughness spectrum, W(K), in the form of a

filtered power-law (Moe and Jackson, 1994b),
wy ~(Ka)? /2 2
W(K)=———(1-—e j , - (81)
KY

with RMS height,

oo Y—2
k= \/27: [w)KaK = \/ma—z—r(z- v/ 2)[22‘7/ 2 1]. (82)
0

Here, T refers to the gamma function -- not the reflection coefficient. The factor

2
2
(l—e"(K“) /2] is obtained by subtracting a Gaussian weighted moving average

(Papoulis, 1984) of the surface from itself.
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V. APPLICATIONS AND CALCULATIONS

Although the theoretical results in this paper are general and include scattering
back into the water, the examples deal with scattering through a rough fluid-fluid
interface (z <0). Both plane-wave and point sources are considered, and the scattered

intensity is computed for the flat-surface case.

A. Continuous plane wave source

The first-order intensity of the field penetrating through a rough surface, with
roughness spectrum given in Eq. (82), due to a CW incident plane wave is calculated
using Egs. (78) in Eq. (43), and setting g(t—14)=1. Using parameters appropriate to a
sandy seafloor, the incoherent acoustic intensity is computed as a function of depth.
Since the grazing angle in this example is below critical, the zero-order (flat-surface)
field is evanescent. Near the surface, the incoherent intensity decays with increasing
depth at rate comparable to the zero-order coherent intensity, but decays at a rate
dictated by the sediment loss further from the surface. This example (Fig. 4) shows that

roughness has a significant effect on the field transmitted through a surface.

B. Incoherent field due to a point source including dispersion

Expressing the 2-D integral in Eqg. (56) in terms of a summation over the surface

yields
6,05, 0; .
Iz(l',l)EAAz-—’}—(%'—l)gz(t—tln"'fzn)e 2Im(k2)r2n ) (83)
n Dn
where
ry =r -1, (84)
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is the distance from surface patch n, at position r, of size AA to the observed field

point, r, and
6 =R 85
fn IR_RI| * ( )

The propagation time from this surface patch to the receiver, Re(t,,), is also given by:

Re(12,)=ran /- (86)
As the area of each surface patch, AA, approaches zero, the summation in Eq. (83)

approaches the exact integral in Eq. (56).

An expression for the incoherent first-order field below the surface due to a point
source follows from Eq. (83). Here, the surface patch (area AA) is chosen sufficiently

small in relation to the distance r,, from the point source to surface patch n, to insure

that the field incident on the surface is a plane wave. The scattered or penetrating field '

intensity is given by:

sy, _
I (r,0)= Mz——(i—lgz(t—tdn)e 2Im{ky )y, , (87)
rlnr2n
where,
6, ==n =Ry (88)

R;—Rs!’

and R; is the transverse coordinate vector of the source. The total propagation time is

given by the real part of:

tin = r—:— +1p,. (89)
with
, 2
R =R, — R, +22 (90)
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When the approximation g(z)=u(r) is made, Eq. (87) is in the form of a convolution,

reducing the computation time significantly.

Using the expression for the first-order scattering cross-section given in Eqg. (79),
the approximate incoherent intensity pulse in lossy sediment below a rough surface
due to a Gaussian narrowband point source above the surface is found for two cases.
In Fig. 5a, the incoherent pulse time series at a position below a rough surface in a
lossy medium due to a point source is found using Eq. (72) for gz(t) in Eq. (87), and is
compared to the result obtained setting the dispersion terms P and Q to zero --
g(t)=u(r). Although the resulting pulse shapes are close in magnitude, as well as peak
arrival time, including the dispersion terms does result in an incoh‘erent intensity pulse
that has a smaller peak magnitude, and is wider than the approximation obtained by
setting g(r) = u(r). In this example, the parameter ¢, in Eq. (66) is equal to two cycles of
the center frequency of f. =20Khz. This frequency results in k=025, which is within
the region of accuracy for first-order perturbation theory (Thorsos and Jackson, 1989;
Thorsos, 1990). In Fig. 5b, the point source is higher, but the incident angle is the

same. In this example, including the dispersion parameters has a slightly greater

effect.

C. Zero-order calculations

Setting

¥, (K) = T(K)¥;(K) (91)
and

S — L (62)

" 2B, (K)

2]




in Eq. (9) results in an expression for the field penetrating a flat fluid-fluid interface due _
to a point source at (Ry,z,) with unit magnitude at 1m from the source. The resulting
integral simplifies to:

(=]

\VZ—(r) = ide K(T(K) i(zsklﬁl(‘K)‘zj‘ZBZ(K)) JO(KR)

—C

S B () ©3

where J; is the Bessel's function of order zero. For comparison purposes, the zero-

order, or flat-surface coherent intensity is plotted in Fig. 6a along with the first-order
intensity pulse using the same parameters as in Fig 5a. In this example, the incident
field is below the critical angle. Although. the zero-order component can be
approximated from Eq. (93) using the method of stationary phase to solve the resulting
integral (see for example Brekhovskikh, 1980; Ishimaru, 1991) when the incident field is
above the critical angle, a numerical method is more suitable when the incident grazing
angle is close to critical (Westwood, 1989). The incident grazing angle is defined here
to be the angle between the mean surface and the line containing the source and
receiver points. Figure 6a shows an “exact” solution of the flat-surface intensity time
series pulse, along with the first-order pulse (including dispersion terms) from Fig. 5a.
For this example, the zero-order intensity pulse arrives earlier and with greater
magnitude than the first-order pulse. In Fig. 6b, the source is moved further from the‘
surface than the previous two examples. Even though the sediment parameters,
receiver point, and incident angle are unchanged from Fig. 6a, the incoherent first-
order intensity pulse is greater in magnitude than the zero-order intensity pulse. As the
source is moved further from the surface, the stationary phase path for the zero order
pulse is longer, and the zero-order pulse amplitude is more attenuated in the lossy
sediment. Since Fig. 4 is a plane wave CW version of this same example, one would
expect that the first-order intensity would be greater than the zero-order intensity for

the source point sufficiently far from the surface.
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VI. CONCLUSION

A general analytical expression for the time dependent narrowband scattered
intensity from and through a fluid-fluid rough interface can be expressed in terms of the
second moment of the T-matrix, or equivalently, in terms of the scattering cross section
per unit area. For the special case of a CW incident plane wave, this result is exact,
which is suprising as the scattering cross section is a far-field entity. Using first-order
perturbation theory to obtain the scattering cross section per unit area yields a simple
expression for the incoherent scattered time depéndent intensity pulse. This expression

is especially tractable when the source pulse is Gaussian.

The above formalism applied to the scattering through a rough surface shows the
effect of roughness on penetration through a surface. When the grazing angle of a
plane wave incident field is below the critical angle in relation to the mean surface, the
zero-order component of the transmitted field is evanescent, and does not penetrate
deeply into the seafioor. Higher order components contain downward traveling waves,

which can increase the depth of penetration of sound relative to the flat-surface case.
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APPENDIX: PERTURBATION THEORY RESULTS

The fields and T-matrices are expanded in their zero-order and first-order

components, with the factor k;h displayed explicitly:

¥Y(K) = ¥ OK) + k¥ V(K) (A1)
T(K.K;) = TOK K;)+ T (K K;) (A2)
Zero-order

The zero-order scattered field, or reflected field:
0
¥ (K) = T(K)¥;(K) (A3)

where T'(K) is the flat-surface reflection coefficient,

F(K) — pBl (K)_ KBZ(K)

A4
0By (K) + P (K) (A4)

Comparing Eqg. (12) to (A3), the reflection coefficient is related to the zero-order T-

matrix TI(P ) by:

T, (K. K;) = T(K)S(K - K;) (A5).
The transmitted field is given in terms of the incident field and transmission coefficient,
¥O(K) = T(K)¥(K) (A6)

Comparing Eq. (13) with (A6), the transmission coefficient is related to the zero-order

T-matrix ﬂ(g ) by:

T (K.K;)= T(K)3(K-K;) (A7)
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First-order

The first-order T-matrices are proportional to the 2-D Fourier transform of the surface,
F(K), and can be written as:

(K K;)= H),(K.K;)F(K-K;) (AB)
T (K.K;)= Hjp (K K;F(K-K;) (A9)
where,
1 —iK’-
F(K)= G [d*Rf(R)e™™ R, (A10)

From Moe and Jackson, (1994) Egs. (26) and (29)

(K" 'K
H, (K7 K) = (1+ (2i[31)2§j) (K) (A1)
k(1 YK”K , (1-T(K")(1-T(K))

Since in the perturbation expansion (A1), the factor k, is displayed explicitly, the above
expression is actually Eq. (29) of Moe and Jackson divided by a factor of k;. The

following expression, equivalent to (A11), is convenient in the present problem:

Hi (K", K)=
11( ) 2

{41+ T(R”))(1+ T(K))+b(1 - T(K"))(1~T(K))} (A12)
iB1(K”)

I" 2 N
a(K”,K)=(l—1JK L. (A13)
p ki P

b(K”,K) = B;(K")B(K)(p-1). (A14)
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From Egq. (24) of Moe and Jackson (noting the difference in scalar field definitions, and
no stratified media, I',3 =0), the continuity of pressure boundary condition for first-

order fields yields:

¥ (K") = ~i] °K ¥, (K)F(K” - K) (A15)
x{iH}1(K”,K) +(1-T(K))B; (K) - kB, (K)(1+ T (K))}

Another expression for ‘I‘S_)(K") follows from Eg. (13) and (A9)
¥ (K”) = [ %K ¥, (K)H;, (K", K)F(K” - K). (A16)

Equating (A15) and (A16) results in

Hyp(K”,K) = Hy; (K", K) +(1-T(K))B; (K) + ixB , (K)(1+ [(K)). (A17)
Noting

PRy _1+T (A18)

Kﬁz 1i-T '

(A17) simplifies to:

Hy5 (K", K) =l.—1p—{iHn(K”,K)+(1—p)Bl(K)(l—r(K»}- (A19)

N

Substituting (A12) into (A19) results in a useful expression for Hj,(K”,K), given as Eq.
(75).




FIGURE CAPTIONS

FIG. 1. Scattering problem geometry for rough interface separating a lossless fluid in
medium 1 (z> f(R)), from a lossy fiuid in medium 2 (z< f(R)). This diagram can be

viewed as a slice through a 2-D surface.

FIG. 2. Diagram describing geometry of variables.

FIG. 3. lllustration of effect of dispersion on peak intensity. Peak of gz(t), normalized

with respect to max(uz(t)) as a function of grazing angle.

FIG. 4. First-order and zero-order field strength as a function of depth. Field strength
given in dB with respect to incident pressure. Critical angle is 27.75°, f =20kHz,
a=01lm, y=3, w,=2x10"m, p=2, §=0019, ¢; =1500m/s, v=113.

FIG. 5. Time-dependent intensity at ‘depth 02m below the mean surface. Source
frequency = 20kHz, t,=100us. Solid line: dispersion terms included; dotted line:

dispersion terms set to zero, g(t)=u(r). Same sediment parameters and incident angle

as Fig. 4.

FIG. 6. Zero-order coherent time dependent intensity shown with dotted line, first-

order incoherent intensity shown with solid line. All parameters identical to Fig. 5.
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